Algèbre Linéaire Familles de vecteurs

TD n° 3: familles de vecteurs

- 1. Déterminer si les familles de vecteurs suivantes sont libres :
 - (a) $v_1 = (4, -2, 6), v_2 = (6, -3, 9)$;
 - (b) $v_1 = (2, -3, 1), v_2 = (3, -1, 5), v_3 = (1, 2, 4)$;
 - (c) $v_1 = (2, -3, 1), v_2 = (3, -1, 5), v_3 = (1, -4, 3)$;
 - (d) $v_1 = (2, -3, 1), v_2 = (3, -1, 5), v_3 = (1, -4, 3), v_4 = (1, 2, 4).$
- 2. Soit *E* un espace vectoriel réel.
 - (a) $\{u_1, u_2, u_3\}$ une famille libre de E. Montrer que $\{u_1 + u_2, u_2 + u_3, u_3 + u_1\}$ est libre.
 - (b) Soit $\{u_1, u_2, u_3, u_4\}$ une famille libre de *E*. Montrer que $\{u_1 + u_2, u_2 + u_3, u_3 + u_4, u_4 + u_1\}$ est liée.
- 3. Soient dans \mathbb{R}^4 les vecteurs $\vec{e}_1(1,2,3,4)$ et $\vec{e}_2(1,-2,3,-4)$. Peut-on déterminer x et y pour que $(x,1,y,1) \in Vect\{\vec{e}_1,\vec{e}_2\}$? Et pour que $(x,1,1,y) \in Vect\{\vec{e}_1,\vec{e}_2\}$?
- 4. Soit E espace vectoriel sur \mathbb{R} et B = (i, j) une base de E. u et v sont deux éléments de E de coordonnées dans cette base $[u]_B = (m, -2)$ et $[v]_B = (2, m)$ où m est un réel. Montrer que (u, v) est une base de E.
- 5. Soit u = (1,0,0), v = (0,1,1) et w = (1,0,1) trois vecteurs de \mathbb{R}^3 .
 - (a) Montrer que B = (u, v, w) est une base de \mathbb{R}^3 .
 - (b) Soit t = (x, y, z). Calculer $[t]_B$.
- 6. Dans \mathbb{R}^5 , trouver une base du sous-espace défini par

$$\begin{cases} x + y + z + t + u = 0 \\ 2x + 3y + 3z + t + u = 0 \end{cases}$$

- 7. Trouver un système d'équations représentant le sous-espace de \mathbb{R}^4 engendré par (2,3,-3,0),(-1,2,1,3) et (1,2,-1,-2).
- 8. On donne u=(m,1,3), v=(0,m,1) et w=(1,0,m) où m est un paramètre réel. Montrer qu'il existe trois valeurs de m pour lesquelles B=(u,v,w) n'est pas une base de \mathbb{R}^3 .
- 9. On note $\mathbb{R}_n[x]$ l'espace vectoriel des fonctions polynômiales de degré au plus n. on note $p_{k,n}(x) = x^k.(1-x)^{n-k}$. Montrer que $(p_{0,n},p_{1,n},\ldots,p_{n,n})$ est une base de $\mathbb{R}_n[x]$.

[indic : montrer que pour
$$i=0,\ldots,n$$
 : $1=\sum_{k=0}^{n-i}C_{n-i}^kx^k.(1-x)^{n-i-k}$]

- 10. Soit *E* l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} . On note $f(x) = \cos x$, $g(x) = \sin x$ et $F = Vect(\{f, g\})$.
 - (a) Les applications $i(x) = \cos 2x$, $j(x) = \cos^2 x$ et $k(x) = 2\sin(x + \frac{\pi}{3})$ appartiennentelles à F^2
 - (b) Soit h(x) = 1. Montrer que (h, f, g) est libre.